这一章谈 C++11 中引入的两种 “语法糖” .使用它们可以使得我们的代码更为简洁优雅。
委托构造函数
在同一个类中,一个构造函数可以调用另一个构造函数,这叫委托构造函数。这是 C++ 11 的新特性。
委托构造函数可以简化在每个构造函数中的重复代码。
注意一点,委托构造函数在使用时不可以形成环:禁止套娃。
这一章谈 C++11 中引入的两种 “语法糖” .使用它们可以使得我们的代码更为简洁优雅。
在同一个类中,一个构造函数可以调用另一个构造函数,这叫委托构造函数。这是 C++ 11 的新特性。
委托构造函数可以简化在每个构造函数中的重复代码。
注意一点,委托构造函数在使用时不可以形成环:禁止套娃。
这一章聊一聊在面向对象的C++中,构造函数的调用顺序。
一个类的数据成员的初始化顺序只与其在类中的声明顺序相关,与其它无关。
而析构时,如果成员是在堆中,析构顺序正好与构造时相反。
类A的成员的构造顺序为: m1_, m2_, pm1_, pm2_
。析构时的顺序为 m2_, m1_
,由于 pm1_, pm2_ 不在堆中,所以它们的析构需要类A自己管理。
我们知道,编译器会为类自动生成几个特别的成员函数:构造函数、复制构造函数、复制赋值运算符、析构函数。后三者比较特殊,我们在下面会频繁提到。
若一个类需要用户显式定义 析构函数、复制构造函数、复制赋值运算符 中的一个,那么这三个函数都需要显式定义 。如果用户显式定义了其中一个,另外两个还是会被编译器隐式定义,这种混杂的情况容易生产无法预期的错误。
如果一个类中有非基本数据类型或者非类类型的成员(如指针、文件描述符等),则这一法则表现的更为明显:隐式析构函数无法对这种成员进行有效的释放,隐式复制构造函数和隐式复制赋值运算符无法进行深拷贝。
C++ 构造函数有很多有意思的小细节。这里来做一些探讨。这些内容可能会分为几章,这一章来探讨 隐式构造函数,显式空构造函数 和 =default 修饰的构造函数 ,私有构造函数和 =delete 修饰的构造函数 之间的区别。
在开始之前,我们先了解两种特殊的类:
聚合类
是 C++ 中的一个特殊的类型。当一个类(class, struct, union) 满足以下条件时,它是一个聚合类:
default
或 delete
的){}
或 =
直接初始化的非静态数据成员一个普通数组也是一种聚合类型(如 int[10], char[], double[2][3])
POD
( Plain old data structure ) 则是一种特殊的聚合类,它必须满足聚合类的所有条件,且不具有以下成员:
可见,POD类类型就是指class、struct、union,且不具有用户定义的构造函数、析构函数、拷贝算子、赋值算子;不具有继承关系,因此没有基类;不具有虚函数,所以就没有虚表;非静态数据成员没有私有或保护属性的、没有引用类型的、没有非POD类类型的(即嵌套类都必须是POD)、没有指针到成员类型的(因为这个类型内含了this指针)
POD 一般用来在不同的模块之前传递数据使用。如一个 C++ 库向外提供 C 接口,可以使用 POD 作为参数。
=default
修饰的构造函数。对于 未定义任何构造函数 的类型( struct
class
or union
),编译器会为该为自动生成一个 inline public 的构造函数, 如果这个类型满足 constexpr 类型的要求,则这个构造函数还会被 constexpr 修饰,这个由编译器生成的构造函数,我们称之为 隐式构造函数 或 默认构造函数。在 C++11 以前,如果用户声明了其它构造函数,则编译器不会生成默认构造函数,需要我们显式的声明。而在 C++11 以后,我们仍可用 default
关键字来强制编译器自动生成原本隐式声明的默认构造函数。
今天在看 cpprestsdk 的源码的时候发现一个方法的定义是这样的:
语法为:
->
指定返回参数的类型, 没想到声明方法也可以这么用。这种写法和传统的方法有什么区别呢?在泛型编程中,一个常见的例子如下:
如果 a
和 b
的类型不同,需要怎么写呢?
我们在调用此方法时必须显示指定 R
的类型, 或者使用 decltype
运算符推导返回值类型。如果让调用的方式简单点呢?把返回值类型放到定义中去, 像这样:
然而这么写是编译不过的。因为 a
, b
在参数列表中,编译器解析返回值的时候,它们还没有定义。那么我们可以这样写:
不过这太晦涩了。
C++ 11 允许将返回值类型后置,前面使用 auto 占位:
简单地说: enable_shared_from_this
是为了解决 在类的内部获取自己的 shared_ptr 这件事情而存在的。
众所周知, 每一个对象都能通过this 指针来访问自己的地址。this 指针也是所有成员函数的隐含参数。然而有些时候,我们需要的不仅是 this,而是一个 "this的智能指针"。
这里有一个常见的场景:
代码如上:在异步方法 DoSth_Async()
中调用了成员方法 OnDo(bool)
. 这里存在一个问题: 当 OnDo()
被调用的时候,该类的是否还在生存中:
智能指针 ptr
在出作用域后立即被释放。所以当 OnDo()
被调用的时候,其所在的对象实际已经被释放了。如果确保在 OnDo()
被调用的时候,该对象仍然在生命周期内呢?一个方便的方法便上在构建线程的时候,将该对象的 shared_ptr 传入到线程。在该线程的生命周期内,该对象就会一直存在。这是一种利用 shared_ptr 的 保活机制
。
单例模式可能是大家最为熟知的一种设计模式,本身没什么好谈的。但是在 C++ 中,由单例模式可以引出一系列的问题,可能会比较有意思,这里探讨一下。
1.使用 static 实现
其中 S2 是要避免的。因为 1. 类的静态成员变量的初始化时间一般早于 main 函数 2. 如果静态成员的初始化里调用了其它类,可能出现未定义的错误。
2.使用指针判断是否初始化
这两种方式在单线程程序中使用都是可以的,但如果在多线程中,就会出现问题。
对于 S1 要注意, C++ 局部静态变量的初始化可能不是线程安全的 , 这就是 Magic Static
,是指 返回一个静态局部变量的引用 的用法,在某些情况下,如S1 可能会被编译器这样解析:
TCP 协议错综复杂, 很容易出现错误,错误码非常之多。这里探究一些在编程中比较常见的错误码。tcp 错误码 在不同的操作系统中的值不同。这里取用 Linux 与 Windows 两种,如 connection_refused 在windows 中的值为10054, 在 Linux 中为54 .
eof
:2
: End of fileeof 标志着流的结束。当对端关闭连接(调用了 shutdown
或 close
) 后,处于 CLOSE_WAIT
状态。 本端会收到 FIN, ACK
。此时如果本端再试图 read
,则会读到 eof
connection_refused
61
: Connection refused10061
: No connection could be made because the target machine actively refused it . 由于目标计算机积极拒绝,无法连接在客户端试图与服务端建立连接的时候发生。一般是服务端没有处于监听状态。 客户端发送发 SYN
, 但是收到了 RST, ACK
connection_reset
54
: Connection reset by peer10054
: An existing connection was forcibly closed by the remote host . 远程主机强迫关闭了一个现有的连接。对端对处于连接状态的socket 进行了异常断开, 如进程中断等。此时如果本端进行读操作,可能会得到此错误。 继续阅读